San Ace 40 GA type
High air flow and low power consumption fan

Features

Energy-saving
Power consumption is reduced to approx. 46 % compared with our conventional fan*1.

High static pressure and High air flow
Max. static pressure: increased to approx. 2 times
Max. air flow: increased to approx. 1.8 times compared with our conventional product*2.

Low sound pressure level
Sound pressure level is ideal while achieved air flow is increased compared with our conventional product *1.

*1: Specification of Model No. 9GA0412H7001. our conventional product is 40sq.x15mm thick. San Ace 40, Model No. 10P0412H701.
*2: Specification of Model No. 9GA0412P7G001. our conventional product is 40sq.x16mm thick. San Ace 40, Model No. 10P0412S701.

40 × 40 × 15 mm

Specifications

With PWM speed control function - With pulse sensor

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9GA0412P7G001</td>
<td>12</td>
<td>10.2 to 13.8</td>
<td>100</td>
<td>0.17</td>
<td>2.04</td>
<td>13,100</td>
<td>0.36</td>
<td>12.7</td>
<td>192</td>
<td>0.77</td>
<td>42</td>
</tr>
<tr>
<td>9GA0412H7001</td>
<td>12</td>
<td>7 to 13.8</td>
<td>0.17</td>
<td>2.04</td>
<td>13,100</td>
<td>0.36</td>
<td>12.7</td>
<td>192</td>
<td>0.77</td>
<td>42</td>
<td>10 to 70</td>
</tr>
</tbody>
</table>

Note: Does not rotate when PWM duty cycle is 0%.
Expected life at 40 degreeC ambient is just reference value.

With pulse sensor

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9GA0412G7001</td>
<td>12</td>
<td>7 to 13.8</td>
<td>0.17</td>
<td>2.04</td>
<td>13,100</td>
<td>0.36</td>
<td>12.7</td>
<td>192</td>
<td>0.77</td>
<td>42</td>
</tr>
<tr>
<td>9GA0412H7001</td>
<td>12</td>
<td>7 to 13.8</td>
<td>0.06</td>
<td>0.72</td>
<td>7,300</td>
<td>0.2</td>
<td>7.1</td>
<td>69.6</td>
<td>0.24</td>
<td>28</td>
</tr>
</tbody>
</table>

Expected life at 40 degreeC ambient is just reference value.

Common Specifications

- Material: Frame, Impeller: Plastics (Flammability: UL94V-0)
- Life Expectancy: Varies for each model
 (L10: Survival rate: 90% at 60°C, rated voltage, and continuously run in a free air state)
- Motor Protection System: Current blocking function and Reverse polarity protection
- Dielectric Strength: 50/60 Hz, 500VAC, 1 minute (between lead conductor and frame)
- Sound Pressure Level (SPL): Expressed as the value at 1m from air inlet side
- Operating Temperature: Varies for each model (Non-condensing)
- Storage Temperature: −30°C to +70°C (Non-Condensing)
- Lead Wire: red: black: Sensor: yellow
 Control (With PWM speed control function): brown
- Mass: Approx. 28g
Air Flow - Static Pressure Characteristics

With PWM speed control function · With a pulse sensor

- **PWM Duty Cycle**

<table>
<thead>
<tr>
<th>Static Pressure (inch H2O) (Pa)</th>
<th>DC12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>50%</td>
</tr>
<tr>
<td>0.2</td>
<td>100%</td>
</tr>
</tbody>
</table>

- **Operating Voltage Range**

<table>
<thead>
<tr>
<th>Static Pressure (inch H2O) (Pa)</th>
<th>PWM Duty Cycle100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>13.8V</td>
</tr>
<tr>
<td>0.2</td>
<td>12V</td>
</tr>
<tr>
<td>0.3</td>
<td>10.2V</td>
</tr>
</tbody>
</table>

PWM Duty - Speed Characteristics Example

Voltage : DC12V
PWM Frequency : 25kHz

![Graph showing speed vs. PWM duty cycle]

- **PWM Input Signal Example**

Input Signal Wave Form

- V_{IH}
- V_{IL}

\[
V_{IL} = 0V \text{ to } 0.4V \\
V_{IH} = 4.75V \text{ to } 5.25V \\
PWM Duty Cycle (%) = \frac{T_1}{T} \times 100 \\
PWM Frequency 25 (kHz) = \frac{1}{T_0} \\
Source Current (I_{source}) = 1mA \text{ Max. at control voltage 0V} \\
Sink Current (I_{sink}) = 1mA \text{ Max. at control voltage 5.25V} \\
Control Terminal Voltage = 5.25V \text{ Max. (Open Circuit)} \\
When the control lead wire is open, speed is same as one at 100% PWM duty cycle.

This fan speed should be controlled by PWM input signal of either TTL input or open collector, drain input.
PWM Duty Cycle

With PWM speed control function

With a pulse sensor

Operating Voltage Range

Air Flow - Static Pressure Characteristics

- Static Pressure
- Air Flow

<table>
<thead>
<tr>
<th>DC12V</th>
<th>13.8V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Static Pressure (in H2O)</th>
<th>Static Pressure (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7V</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>12V</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>13.8V</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Connection Schematic

DC fan input voltage

PWM Input Signal

Control

I_{source}

I_{sink}

Inside of DC fan

Specifications for Pulse Sensors

Output circuit: Open collector

Output waveform (Need pull-up resistor)

Inside of DC fan

Sensor

Pull-up resistor

Sensor output

V_{source}

V_{sink}

0V

In case of steady running

\[T_1 = \frac{1}{4} T_0 \]

\[T_1 = \frac{1}{4} T_0 = 60/4N \text{ (sec)} \]

\[N = \text{Fan speed (min}^{-1} \text{)} \]
Dimensions (unit : mm) (With PWM speed control function · With pulse sensor)

![Diagram of dimensions]

Reference dimension of mounting holes and vent opening (unit : mm)

![Diagram of reference dimensions]

Notice

- The products shown in the catalog are subject to Japanese Export Control Law. Diversion contrary to the law of exporting country is prohibited.
- To protect against electrolytic corrosion that may occur in locations with strong electromagnetic noise, we provide fans that are unaffected by electrolytic corrosion.