SANUPS PV Monitor Type C 出力制御機能の開発

加藤 裕 樋口 健二 竹元 直樹 近藤 真二

Yutaka Kato Kenji Higuchi Naoki Takemoto Shinji Kondo

1. まえがき

資源エネルギー庁が、2015年1月および3月に公布した「電気 事業者による再生可能エネルギー電気の調達に関する特別措置 法」により、再生可能エネルギーを利用した発電設備に対して、 出力制御システムの導入が義務付けられた。

この出力制御システムに適合するために、2015年8月に出 力制御機能付き太陽光発電システム監視装置「SANUPS PV Monitor E Model」を開発した(1)。この開発時点では、電力会社 サーバから出力制御スケジュールを取得する方式は確定してい なかったが、2016年9月に九州電力において同スケジュール取 得方式が決定され、2017年4月からの同社による出力制御が施 行されることになった。当社ではこの決定を受け、「SANUPS PV Monitor Type C」の開発をおこなった。本稿では、その概要 を紹介する。

2. 出力制御システムの概要

2.1 新たな出力制御ルール

前述の省令において、新たな出力制御ルールに関して以下の 内容が定められた。

- (1) 出力制御の対象を,500kW未満の太陽光発電設備にも適 用すること
- (2) 1日単位で年間30日まで行うことが可能であった無補償 の出力制御を,時間単位で無制限に行うことを可能とする こと
- (3) 出力制御システムを実現するために、出力制御機能付きパ ワーコンディショナ (以下 PCS) の導入を義務付けること

2.2 出力制御機能付き PCS システムの構成

図1に出力制御機能付きPCSシステムの構成を示す。本シス テムは、電力会社が提示する出力制御スケジュールに基づき、 PCSの出力電力を制御するものであり、出力制御ユニットと PCS (狭義) から構成する。

(1) 出力制御ユニット

電力会社が提示する出力制御スケジュールを電力会社 サーバから取得し、そのスケジュールに基づいて、「(2) PCS (狭義)」を制御する機能をもつ制御装置と定義する。 外部通信機能がない場合でも、ユニット内に保存された固 定スケジュールにより、「(2) PCS (狭義)」を制御する。

今回開発をおこなった、「SANUPS PV Monitor Type C|が該当する。

(2) PCS (狭義)

従来のPCSの機能に加え、「(1) 出力制御ユニット | から 出力制御情報を受けて、太陽光発電の出力(上限値)を制御 する機能を有するPCSと定義する。

当社製品では、「SANUPS P61B」や「SANUPS P73H」、 「SANUPS P73J」,「SANUPS P73K」,「SANUPS P83E」 が該当する。

(3) PCS (広義)

「(1) 出力制御ユニット」と「(2) PCS (狭義)」から構成す るシステムまたは、「(1) 出力制御ユニット | と「(2) PCS (狭 義)」の機能を一体化したシステムと定義する。

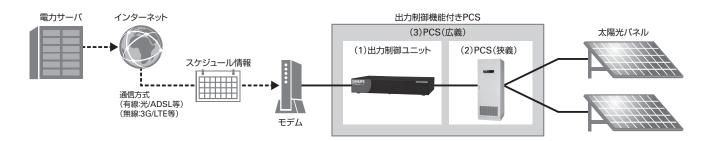


図1 出力制御機能付き PCS システムの構成

2.3 出力制御システムの運用方法

(1) 出力制御動作の概要

出力制御ユニットは、1年分の出力制御スケジュールを 予め取得し、出力制御を実施する。ただし、出力制御ユニッ トが、外部通信機能を備える場合は、最短30分毎に更新さ れる出力制御スケジュールを電力会社サーバから取得し, 随時出力制御スケジュールを更新する。

図2に出力制御動作の概要を示す。出力制御ユニット は、電力会社サーバから取得した出力制御スケジュールに 従い、PCS (狭義) へ出力制御値を送信する。各日の出力制 御スケジュールは、30分毎、1%単位で設定され、PCS (狭 義) は、出力制御値に従って出力を増減する。

(2) 契約容量への換算機能

PCS容量とパネル容量が一致しない場合, 出力制御値は, 「契約容量ベース」から「PCS容量ベース」に換算してPCS (狭義)に送信する。図3に契約容量への換算機能の概要を 示す。

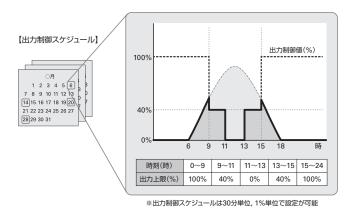


図2 出力制御動作の概要

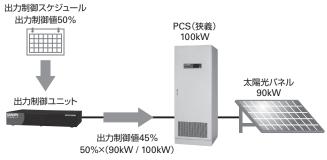
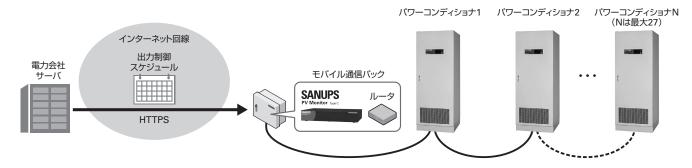


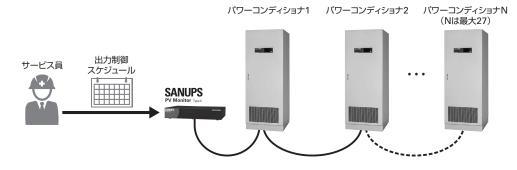
図3 契約容量への換算機能の概要

3. 製品の概要

図4に「SANUPS PV Monitor Type C」の外観を示す。本製 品は、当社製太陽光発電用PCSとRS-485通信で接続し、出力制 御システムを構成する。また、LANインタフェースにより、太 陽光発電システムの発電量の確認や、本製品と接続されたPCS を遠隔から監視および設定・制御することができる。


図4 「SANUPS PV Monitor Type C」外観

4. 特長


4.1 出力制御システムの構成

「SANUPS PV Monitor Type C」は、出力制御ユニットとし て, 当社製太陽光発電システム用PCSを最大27台まで接続可能 である。図5に本製品を使用した、出力制御システムの構成を示 す。インターネット回線を使用して、出力制御スケジュールを 随時更新するシステム (出力制御スケジュールの書き換えによ る出力制御システム)と、インターネット回線がない場合でも、 発電事業者が, 定期的に出力制御スケジュールの更新作業を行 うシステム (固定スケジュールによる出力制御システム) を構成 可能である。

- (1) 出力制御スケジュールの書き換えによる出力制御システム 本システムは、インターネット回線を使用して、電力会 社サーバから出力制御スケジュールを取得し、「SANUPS PV Monitor Type C」の出力制御スケジュールを随時更新 する。設置場所にインターネット回線の環境がない場合は、 「SANUPS PV Monitor Type C」と、モバイル通信用ルー タを屋外用筐体に収めた、「モバイル通信パック」を使用す ることで、本システムを実現できる。「モバイル通信パッ ク」は、FOMA またはXi通信エリアで使用可能である。
- (2) 固定スケジュールによる出力制御システム 本システムは、発電事業者が、電力会社サーバから年1回 以上, 手動で「SANUPS PV Monitor Type C」の出力制御 スケジュールを更新する。

(1) 出力制御スケジュールの書き換えによる出力制御システム

(2) 固定スケジュールによる出力制御システム

図5 「SANUPS PV Monitor Type C」を使用した出力制御システムの構成

4.2 電力会社サーバ通信機能

図6にスケジュール配信条件設定画面を示す。本画面では、電 力会社サーバとの通信に必要な情報が設定できる。

出力制御ユニットと電力会社サーバとの通信はHTTPS (Hypertext Transfer Protocol Secure) を使用し, TLS (Transport Layer Security) プロトコルによるセキュアな通信により、 出力制御スケジュールの取得を行う。

本画面では、電力会社サーバとの通信に必要な、発電所 ID, 配信サーバURL等が設定できる。

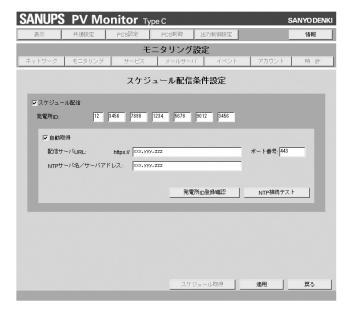


図6 スケジュール配信条件設定画面

4.3 電力会社サーバ時刻同期機能

電力会社サーバから出力制御スケジュールを取得し、出力制 御スケジュールに基づき PCS の出力電力を制御するためには, 電力会社サーバと時刻同期を行うことが義務付けられている。

従来機においてもNTP (Network Time Protocol) による時 刻同期機能は有していたが、電力会社サーバから出力制御スケ ジュールを取得する場合、電力会社サーバで指定された定期更新 タイミングで、NTPにより電力会社サーバとの時刻同期を行う。

4.4 出力制御機能

図7に出力制御確認画面を示す。本画面では、電力会社サーバ から取得した30分毎、1%単位の制御スケジュールを確認する ことが可能で、最大1000日分の出力制御スケジュールを確認で きる。

また、PCS容量とパネル容量が一致しない場合は、出力制御 値を「契約容量ベース」から「PCS容量ベース」に換算してPCS へ送信する。

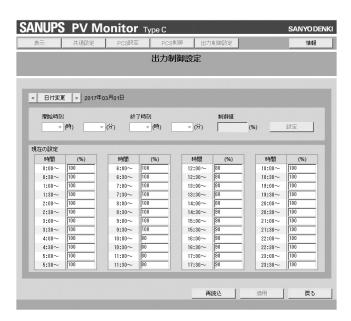


図7 出力制御確認画面

4.5 太陽光発電システム監視機能

PCSから収集した発電量などの計測値を表示したり、E-mail などでPCSの状態を監視したりすることが可能であり、太陽光 発電システムの監視ができる。

また、PCS状態表示画面により、接続されたPCSの状態が監 視できる。図8にPCS状態表示画面を示す。本画面では、PCS の運転状態や出力制御状態, PCSへ送信する出力制御値を登録 台数分一覧で表示することが可能である。

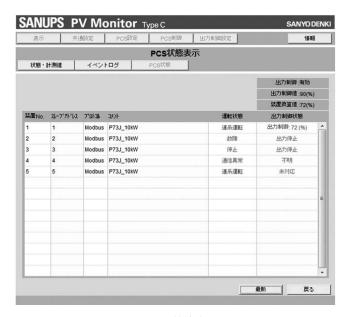


図8 PCS 状態表示画面

4.6 PCS 設定・制御機能

本製品は、接続されたPCSの設定や制御をすることができ る。図9にPCS設定画面を示す。本画面では、PCSの連系保護 機能の設定や出力力率の設定、自立運転に関する設定など PCS 本体の設定を確認したり変更したりすることができる。

図10にPCS制御画面を示す。本画面では、PCSの運転や停 止、運転モードの変更などの制御を行うことができる。

なお、本機能に対応しているPCSは、「SANUPS P73H」、 [SANUPS P73J], [SANUPS P73K], [SANUPS P83E] T ある。

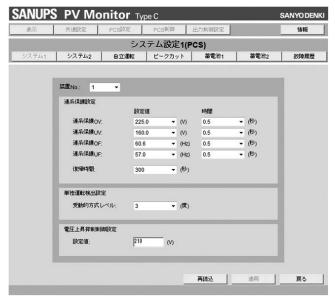


図9 PCS設定画面

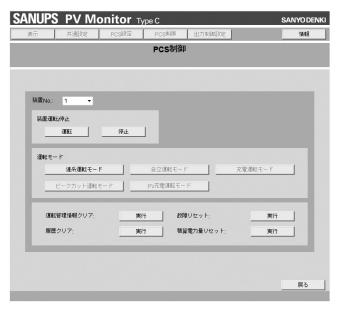


図10 PCS制御画面

4.7 データ収集・集計機能

本製品は、パワーコンディショナから収集したデータを集計 し,保存することができる。

従来品では10分集計データ、1時間集計データ(日報)を42日 分、1日集計データ(月報)を25ヶ月分保存していた。

本製品は、出力制御システムの推奨仕様に従い、発電実績のト ラックレコードとして、10分集計データを100日分に拡張し、 約3ヶ月分の出力制御結果を保存できるようにした。

5. 仕様

出力制御機能付き太陽光発電システム監視装置「SANUPS PV Monitor Type C」の仕様を表1に、その機能を表2に示す。

表1 「SANUPS PV Monitor Type C」の仕様

項目		仕 様	備考
入力電圧		AC100 ~ 240V	
入力許容電圧範囲		AC85 ~ 264V	
入力周波数		50/60Hz	
最大消費電力		5W	
	パワーコンディショナ用 インタフェース	RS-485	差し込み式端子台 3Pin
外部インタフェース	LANインタフェース	100BASE-Tx / 10BASE-T	RJ-45
	設定用ポート	RS-232C USB	RS-232C D-Sub 9Pinオス型 MiniUSB
/t mm/x	周囲温度	−25~+60°C	
使用環境	相対湿度	90%以下	結露なきこと
外形寸法		220×150×40mm (幅×奥行き×高さ)	突起含まず
質量		1.0kg	
出力制御対応 PCS		SANUPS P73H SANUPS P73J SANUPS P73K SANUPS P83E SANUPS P61B	

表2 「SANUPS PV Monitor Type C」の機能

項目	内 容	備考
出力制御機能	出力制御值設定(30分毎) 1000日保有	
PCS 設定機能	システム設定, 自立運転設定, ピークカット設定 蓄電池設定, 故障履歴表示	3相PCSのみ対応
PCS制御機能	運転, 停止, 運転モードの変更	3相PCSのみ対応
E-mail 監視機能	イベント通知メール,リクエストメール応答,報告メール PCS設定,制御	
SNMP対応	標準MIB (RFC1213),拡張MIB	
WEB対応	発電状況図、トレンドグラフ (日報、月報)	
計測データ収集	情報採取間隔 10 秒,接続装置 Max.27 台	
	10分集計データ(システム総合値) 100日分保有	
計測データ集計	1時間集計データ(単機値×27台) 42日分保有	
	1日集計データ(単機値×27台) 25ヶ月分保有	
DHCP対応	対応可	
NTP対応	対応可	
FTP によるデータダウンロード	計測情報, イベント情報, 設定情報, 集計情報, 出力制御スケジュール	
無通信監視(死活監視)	E-mail監視, SNMP監視	
遠隔パラメータ設定	SSH, Telnet, WEB	
遠隔プログラム更新	対応可	
データ収集装置との共存	対応可	

6. むすび

本稿では、出力制御機能付き太陽光発電システム監視装置 「SANUPS PV Monitor Type C」の概要を紹介した。本製品の 開発によって,電力会社サーバとの通信機能が組み込まれ,正式 に太陽光発電の出力制御システムが構築できるようになった。

今後, 各電力会社において, 出力制御システムの導入が進む ことで, 本製品の必要性が増し, それに伴い, 太陽光発電システ ムの保守, 監視に対しての要求も増していくことが予想される。 これらの要求に応えるべく、保守監視サービスも充実させてい くことで, 今後もお客さまが満足できる製品を提供していく所 存である。

猫文

(1) 竹元 直樹ほか:

「出力制御機能付き SANUPS PV Monitor E Modelの開発」, SANYODENKI Technical Report No.41 (2016)

加藤 裕 1991年入社 パワーシステム事業部 設計第二部 電源機器, 監視装置の開発, 設計に従事。

樋口 健二 1996年入社 パワーシステム事業部 設計第二部 電源機器, 監視装置の開発, 設計に従事。

竹元 直樹 2014年入社 パワーシステム事業部 設計第二部 電源機器, 監視装置の開発, 設計に従事。

近藤 真二 1985年入社 パワーシステム事業部 設計第二部 電源機器, 監視装置の開発, 設計に従事。