φ136mm×28mm厚 リバーシブルフローファン 「San Ace 136RF」 9RF タイプ

西沢 敏弥

藤巻 哲

工藤 愛彦

川島 高志

Toshiya Nishizawa

Satoshi Fujimaki

Naruhiko Kudo

Takashi Kawasima

1. まえがき

近年、冷却用ファンの使用用途として、冷却以外の分野で使 用されることが増えている。住宅換気や飲料用自販機, 食品用 ショーケース, 印刷機などの送風を利用した分野である。

例えば、住宅換気においては、室内の温度を調整するため、室 外の空気を室内へ吸気する場合と室内の空気を室外へ排気す る場合がある。従来ではこのような場合、吸気用と排気用とで 別々のファンを設置する必要があった。

このような状況から、設備のコストや設置スペースを削減す るために1台で両方向に送風できるファンの要求が高まってき ている。

こうした要求に応えるために、両方向に送風できる新たな ファンとして、 ϕ 136mm×28mm厚リバーシブルフローファ ン [San Ace 136RF | 9RF タイプを開発・製品化した。

本稿では、その特長と性能を紹介する。

2. 開発品の特長

図1に「San Ace 136RF」9RFタイプ(以下, 開発品という)の 外観を示す。

図1 *ф* 136mm×28mm厚 「San Ace 136RF」 9RF タイプの外観

開発品の特長を以下に示す。

- (1) 両方向にほぼ同等の風量-静圧特性
- (2) 送風方向を切替える機能
- (3) 羽根側・銘板側ともに同形状の取付開口部

なお、開発品は両方向に送風する製品であるため、送風方向を 以下のように定義している。

・正方向:羽根側から吸込み,銘板側へ送風する方向 ・逆方向:銘板側から吸込み、羽根側へ送風する方向

3. 開発品の概要

3.1 寸法諸元

開発品の寸法諸元を図2に示す。

3.2 特性

3.2.1 一般特性

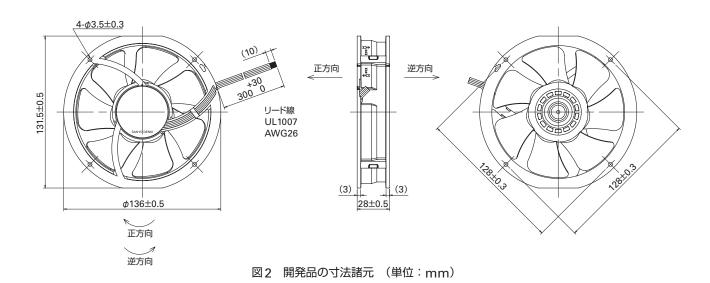
開発品の一般特性を表1に示す。

定格電圧はDC12VとDC24Vの2種で、それぞれ定格回転速 度3,100min-1を製品化した。

3.2.2 風量一静圧特性

開発品の風量-静圧特性例を図3に示す。

3.2.3 送風方向切替え機能


開発品のPWMデューティー回転速度特性例を図4に示す。 PWM デューティサイクル 100% 時に正方向の最高回転速度 となり、PWM デューティサイクル 0% 時に逆方向の最高回転

速度となる。PWM デューティサイクル 50% 時にファンは停止

また、コントロールリード線をマイナス電源線に接続した場 合には逆方向の最高回転速度となり、コントロールリード線を マイナス電源線に接続しない場合には正方向の最高回転速度と なる。

3.3 期待寿命

開発品の周囲温度60°Cにおける期待寿命(残存率90%, 定格 電圧連続運転、フリーエアー状態、常湿)は、40,000時間である。

型番	送風方向	定格 電圧 [V]	使用 電圧範囲 [V]	PWM デューティ サイクル [%]	定格 電流 [A]	定格 入力 [W]	定格 回転速度 [min ⁻¹]	最大原 [m³/min]		最 [Pa]	大静圧 [inchH2O]	音圧 レベル [dB(A)]	使用温度範囲 [°C]	期待寿命 [h]
9RF1312P3H001	正方向		10.2 ~ 13.8	100	0.15	1.8	3,100	2.00	70.7	102	0.410	35	20 ~ +70	40,000/60°C
	逆方向	12		0	0.15	1.8	3,100	2.00	70.7	104	0.418	46		
9RF1324P3H001	正方向	0.4	4 20.4 ~ 27.6	100	0.09	2.2	3,100	2.00	70.7	102	0.410	35		
	逆方向	24		0	0.09	2.2	3,100	2.00	70.7	104	0.418	46		

開発品の一般特性

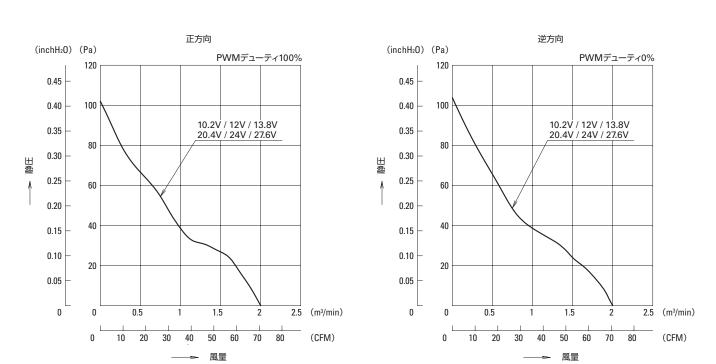


図3 開発品の風量-静圧特性例

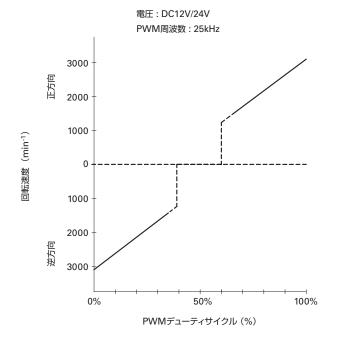


図4 開発品のPWMデューティー回転速度特性例

4. 開発のポイント

開発品は送風方向を切替えられる機能を備え, 両方向に出来 る限り同等の風量-静圧特性になるよう工夫した。

以下に開発品の各特長を実現させた開発のポイントを紹介す る。

4.1 羽根・フレーム形状

両方向で出来る限り同等の風量・静圧が得られるよう、従来品 にない羽根形状を採り入れ、角度・枚数などの最適化を図った。

また, 逆方向の場合はフレームのスポークが妨げとなり、送風 効率が低下してしまうが、スポーク形状の見直しとフレーム内 径形状の工夫により, 両方向にほぼ同等の風量-静圧特性を実 現した。

これにより、 顧客が装置の設計をする際に風量のコントロー ルをイメージしやすくなったと考える。

4.2 モータ・回路部

モータ・回路部においては、通常一方向にのみ回転する単相駆 動モータを両方向に回転できるよう駆動回路を見直し, 外部から のPWM信号で正方向・逆方向を切替える制御方式を実現した。 また、コントロールリード線をマイナス電源線に接続した場 合には逆方向の最高回転速度となり、コントロールリード線を マイナス電源線に接続しない場合には正方向の最高回転速度と なるため、PWM信号を使用しなくても回転方向を切替えるこ とを可能にした。

開発品は図4に示すとおり、PWM速度コントロール機能に よって、適切な回転速度に調整できるので、顧客装置全体として の低騒音化・消費電力低減に貢献できると考える。

4.3 ファン取付開口部の形状

顧客において装置設計や板金加工を容易にすることを意図し てファン取付開口部を単純な形状 (円形) とし, さらに羽根側・ 銘板側を同形状にした。

開発品の取付開口部における参考寸法図を図5に、開発品の 板金への取付状態例を図6に示す。

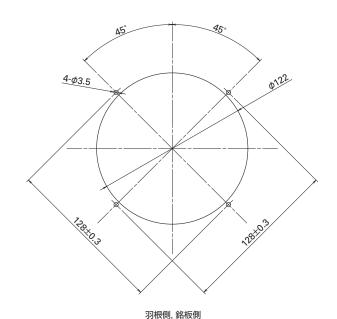


図5 開発品の取付開口部における参考寸法図

図6 開発品の板金への取付状態例

5. 開発品と従来品との比較

5.1 ファン台数削減による省スペース化

住宅換気などでは、室外の空気を室内へ吸気する場合と室内 の空気を室外へ排気する場合がある。従来ではこのような場合, 吸気用ファンと排気用ファンを少なくとも各1台ずつ設置する 必要があった。

開発品は1台で両方向に送風できるので、開発品と羽根サイズ が同等である従来品 (120mm 角 25mm 厚 9G タイプ) とのファ ンサイズを比較すると、従来品2台使用時より開発品1台使用時 の方が設置スペースをおおよそ半分に削減することができる。

開発品1台と従来品2台のファンサイズ比較を図7に示す。

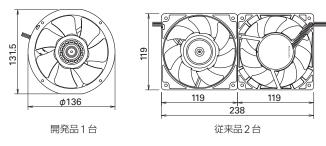


図7 開発品1台と従来品2台のファンサイズ比較

5.2 風量-静圧特性, 消費電力, 音圧レベルの比較

開発品9RF1312P3H001の正方向と従来品9G1212H401の 風量-静圧特性比較を図8に示す。また、開発品の逆方向と従 来品9G1212H401の風量-静圧特性比較を図9に示す。このと き, 各々の交点を通る想定システムインピーダンス上の点を動 作点とし、その時の消費電力、音圧レベルの比較を表2、3に示

開発品は想定システムインピーダンス上の動作点において従 来品と比較すると,正方向・逆方向ともに消費電力が約19%低 減している。音圧レベルに関しては、開発品の逆方向は従来品 と同等であるが、開発品の正方向は従来品より4dB(A)低減し ている。

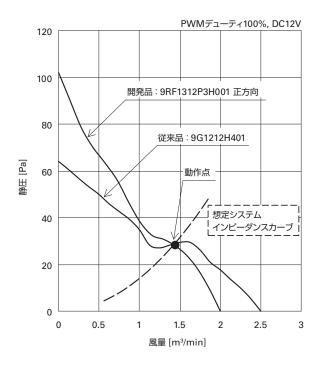


図8 風量-静圧特性例 (開発品の正方向と従来品との比較)

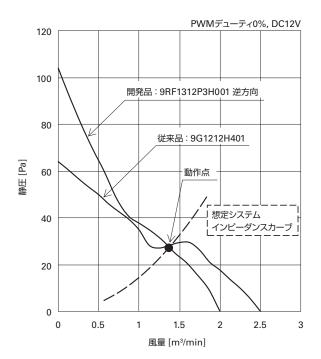


図9 風量-静圧特性例 (開発品の逆方向と従来品との比較)

表2 想定システムインピーダンス上動作点の 消費電力, 音圧レベルの比較 (開発品の正方向と従来品との比較)

	消費電力 [W]	音圧レベル [*] [dB(A)]
開発品 9RF1312P3H001 正方向	2.6	40
従来品 9G1212H401	3.2	44

※吸込側より1mの値

表3 想定システムインピーダンス上動作点の 消費電力, 音圧レベルの比較 (開発品の逆方向と従来品との比較)

	消費電力 [W]	音圧レベル [*] [dB(A)]
開発品 9RF1312P3H001 逆方向	2.6	46
従来品 9G1212H401	3.2	46

※吸込側より1mの値

6. むすび

本稿では、当社で初めての製品となる ϕ 136mm × 28mm 厚 リバーシブルフローファン [San Ace 136RF] 9RF タイプの特 長と性能の一部を紹介した。

開発品は、送風方向を切替えられる機能を備え、両方向にほぼ 同等の風量-静圧特性を有したファンの製品化を実現した。す なわち、従来では複数のファンを使用して両方向に送風してい た装置において、1台で満足することができる製品となってい る。

これにより、お客さまの装置のコストや設置スペースの削減 に寄与できるとともに、冷却用途とは異なる新たな分野・市場へ 大いに貢献が期待できると考える。

西沢 敏弥 1999年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

藤巻 哲 1982年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

工藤 愛彦 1997年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

川島 高志 2011年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。