低消費電力ファン 「San Ace 70 9GA タイプ

西牧 健太 宮原 義則 村松 陽 羽田 格彦

Kenta Nishimaki Yoshinori Miyabara You Muramatsu Kakuhiko Hata Michinori Watanabe

1. まえがき

近年では、インターネットの普及に伴い、サーバやストレージ などの情報通信機器は、データ量の増加や処理の高速化に対応 するために、より高密度実装になり、機器内部の発熱量も増加し ている。

また, 地球環境保護は企業活動においても重要であり, 機器の 省エネルギー化は、どの業界も取り組む課題となっている。

これらに対応するため、低消費電力で、より冷却性能が高い ファンが求められている。

本稿では、このような市場要求を受けて開発した低消費電力 ファン「San Ace 70」9GA タイプの特長と性能を紹介する。

2. 開発の背景

装置の高密度実装化が進み、ファンにはより高い冷却性能が 求められている。当社では、従来から60mm角ファンを製品化 してきた。しかし、60mm角ファンの性能向上は、ファンの駆動 回路に電力増加に対応するための電子部品の搭載スペースが確 保できないため、難しくなっている。

一般に、より大きいサイズのファンを選定すれば、高い冷却性 能が得られる。当社のラインアップでは、60mm角の次に大き いサイズは80mm 角で、縦横20mm 増加するためスペースの限 られた装置には搭載できない場合がある。そこで、60mm 角以 上の性能, 80mm 角より小さいサイズのファンが求められてい る。

また、様々な冷却のニーズがある中で、ファンにおける新たな サイズのラインアップは、装置設計の自由度を増やすことに繋 がる。

上記の背景により、当社では新規サイズである70mm角 38mm 厚の高静圧・低消費電力ファン [San Ace 70] 9GA タイ プを開発した。

3. 開発品の特長

図1に「San Ace 70」9GA タイプ (以下, 開発品という) の外 観を示す。

渡辺 道徳

図1 「San Ace 70」9GA 外観

以下に開発品の特長を示す。

- (1) 低消費電力
- (2) 高静圧
- (3) PWM コントロール機能

4. 製品の概要

4.1 寸法諸元

開発品の寸法諸元を図2に示す。

4.2 特性

4.2.1 一般特性

定格電圧はDC12Vで, 定格回転速度は16,500min-1 (Gス ピード), 12,000min-1 (Hスピード) の2種類を製品化した。 開発品の一般特性を表1に示す。

4.2.2 風量—静圧特性

開発品の風量―静圧特性例を図3に示す。

4.2.3 PWM コントロール機能

開発品のPWMデューティサイクルに対する風量―静圧特性 例を図4に示す。

4.3 期待寿命

本開発品の周囲温度60°Cにおける期待寿命(残存率90%,定 格電圧連続運転、フリーエア状態、常湿)は、40,000時間である。

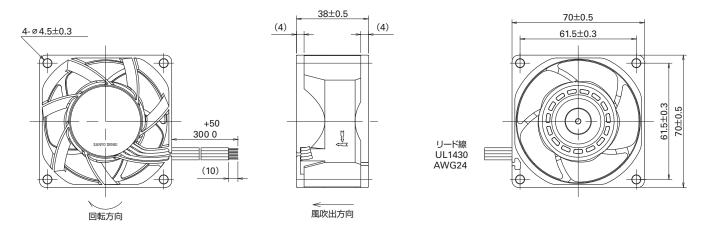


図2 開発品の寸法諸元(単位:mm)

表1 開発品の一般特性

型番	定格電圧[V]	使用電圧範囲 [V]	PWM デューティ サイクル[%]	定格電流 [A]	定格入力 [W]	四	最大原 [m³/min]			大静圧 [inchH2 0]	音圧 レベル [dB(A)]	使用温度範囲 [°C]	期待寿命 ^{注1)} [h]
9GA0712P1G001			100	2.6	31.2	16,500	2.65	93.6	860	3.45	65	-20~+70	40,000/60°C (70,000/40°C)
SGAU/ IZP IGUUI	12	10.8 ~ 13.2	0	0.16	1.92	4,400	0.70	24.7	61	0.24	30		
0.0742.0411004			100	1.1	13.2	12,000	1.92	67.8	455	1.83	57		
9GA0712P1H001			0	0.07	0.84	2,500	0.40	14.1	20	0.08	19		

注1: 周囲温度40°Cの場合の期待寿命は参考値

※入力 PWM 周波数: 25kHz

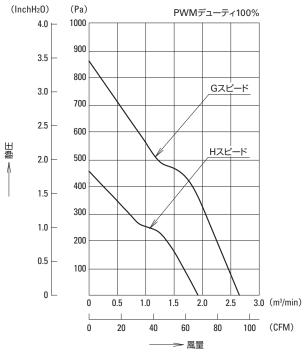


図3 開発品の風量―静圧特性例

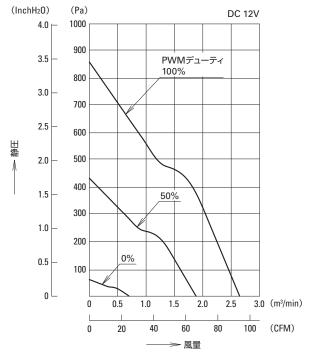


図4 PWM デューティサイクルに対する 風量-静圧特性例 (9GA0712P1G001)

5. 従来品 (60mm角, 80mm角ファン) との 比較

5.1 開発のポイント

開発品は、60mm角ファンと80mm角ファンの間にある風量 一静圧特性の空白領域を埋めるため、60mm 角ファンを上回る 高静圧を実現するとともに、消費電力を低減することに注力し た。

(1) 羽根・フレーム形状の最適化

羽根の形状・動翼と静翼の組合せ・フレームの形状を最適化 することで、60mm角ファンを上回る静圧を実現した。

(2) モータサイズの最適化

70mm 角のファンサイズに対し, 既存の60mm 角ファン用の モータでは、羽根負荷の増加に対して駆動トルクが足りない。

他方,80mm 角用のモータでは、モータ径が大きすぎて十分な 通風面積を確保できない。そこで、モータサイズと通風面積の バランスをとりながら、最適なサイズのモータを選定した。

また,モータ巻線の線積率を上げるなど,羽根負荷に対する モータ出力を最適化し、低消費電力を実現した。

5.2 風量―静圧特性の比較

開発品と従来品の風量―静圧特性比較を図5に示す。70mm 角ファンは、60mm角ファンと80mm角ファンの中間に位置す る特性であるが、静圧寄りの領域においては80mm角ファンの 一部機種 (9GV タイプ, 9GA タイプ) を上回る特性を有してい

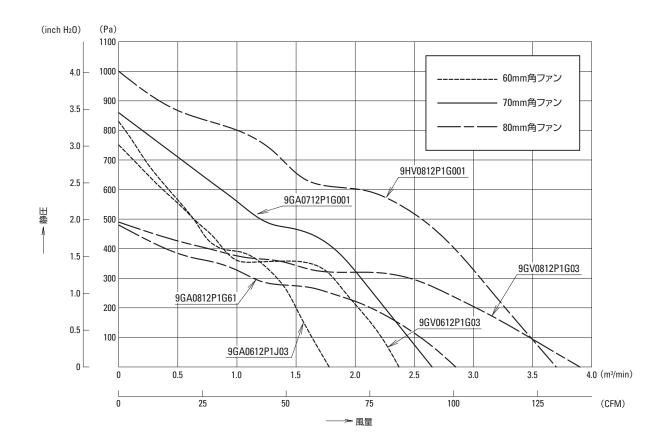
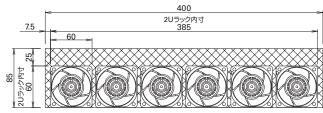
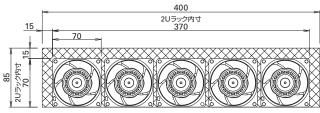



図5 風量一静圧特性比較


6.2Uユニットへの適用

6.1 2U ユニットへの適用の考察

データセンターなどで使用されるサーバには、19インチラッ クに収納できる1Uユニット、または2Uユニットが使用されて いる。2Uユニットにおいては、60mm角ファンを6台並列で使 用される場合が多い。図6に60mm角、および70mm角ファン の、2Uユニットへの設置を示す。60mm 角6台では、高さ方向 に余裕がありすぎるが、70mm 角5台であれば、2Uユニットの スペースを有効に使用でき、ファンの台数を削減できる。

(a) 60mm 角ファンを使用した場合

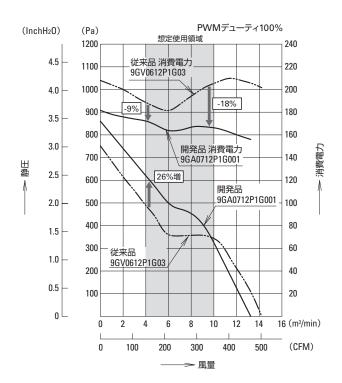
(b) 70mm 角ファンを使用した場合

図6 2Uユニットへの設置

6.1.1 風量―静圧特性の比較

開発品と従来品の風量―静圧特性比較を図7に示す。

2Uユニットで使用する状況を想定し、開発品は5台並列設 置, 従来品 (60mm 角ファン) は6台並列設置にて比較する。


従来品の9GV0612P1G03並列6台に対し、開発品の最高風 量品9GA0712P1G001並列5台は想定使用領域において最大 26% 増の高静圧化を実現している。

6.1.2 消費電力の比較

従来品9GV0612P1G03並列6台に対し、開発品9GA 0712P1G001並列5台は想定使用領域において9~18%の消費 電力低減を実現している。

6.1.3 音圧レベルの比較

開発品と従来品の音圧レベル比較を図8に示す。従来品 9GV0612P1G03並列6台に対し、開発品9GA0712P1G001並 列5台はフリーエアでは、2dB(A)低減、想定使用領域では最大 4dB(A)低減した。

従来品と開発品の風量一静圧特性例 (9GV0612P1G03 並列6台, 9GA0712P1G001並列5台使用時)

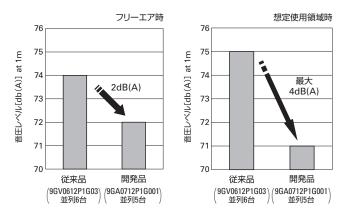


図8 音圧レベル比較

7. むすび

本稿では、 開発した低消費電力ファン [San Ace 70] 9GA タ イプの特長と性能の一部を紹介した。

開発品は、2Uユニットに適した70mm角のファンであり、ま た従来品60mm角ファンよりも高静圧, 低消費電力を実現した 製品である。これにより、高密度実装化し発熱量が増大してい る情報通信機器に対応した冷却性能を実現した。

新たに70mm角サイズのファンをラインアップしたことによ り、装置のスペースに合わせたファンの選択肢が増えるととも に、新しい市場・用途での活用が期待される。

西牧 健太 2012年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

宮原 義則 2004年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

村松 陽 2002年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

羽田 格彦 1997年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。

渡辺 道徳 1989年入社 クーリングシステム事業部 設計部 冷却ファンの開発, 設計に従事。