変動に対応した生産体制

宮入 節男 藤沢 今朝友 六川 洋輔

Setsuo Miyairi Kesatomo Fujisawa Yousuke Rokugawa

1. まえがき

当社のパワーシステム事業は年間を通して仕事量の変動が比較 的大きい傾向にある。2008年後半からの世界的な不況が重なり 仕事量の減少,変動が一段と大きく,厳しい状況が続くこととなっ た。この状況を乗り切るために、仕事量に左右されず、常に一定レ ベルの生産性を維持すべく,投入工数を徹底的にコントロールする 生産体制の構築に挑戦した。

2. 基盤となる活動

変動に対応する生産体制を構築するために、基盤となった活動 が2つある。1つは基本である5S活動、もう1つは生産性向上活動

5S活動は2007年にスタートさせていた。整理・整頓を柱に、生 産に不要な物の排除と、工具等の作業補助具の整備を実施した。 生産性向上活動は、2008年7月に社内プロジェクトとして発足さ せ、ムダの排除と効率の良いモノつくりをテーマとして活動を開始 していた。

3. 目標設定

5S活動は「不具合ゼロの職場環境つくり」と「在庫・スペース 1/2」を目標とした。

生産性向上活動では、数値目標を掲げた。2008年6月の生 産性の実績を基準として、2009年6月までに200%に向上さ せることを目標とした。

4. 主な活動内容と成果

4.1 5S活動

生産に不要なものを排除するために赤札作戦を実施した。この 作戦の目的は職場内のアカ(不要物)を浮かび上がらせて、「いる物」 どいらない物 を区別することにある。4回の赤札作戦の実施によ り、大量の不要物を排除した。これにより空いたスペースを効果的 に活用するため小規模なレイアウト変更をおこない、その成果とし て約1,000m²のスペースを創出した。

写真1 5S活動により創出できたスペース

4.2 生産性向上活動

代表的な3つの施策を以下に解説する。

4.2.1 作業改善

全員が参加して活動する意識を共有するため、まず作業担当者 自らが実践できる改善から始めた。1人20件/月の改善を目標とし てスタートし、 自作業のどんな些細な問題も取り上げ、 繰返し改善 をすることで、ムダの排除と作業効率の向上を進めた。作業改善は 作業担当者の改善意識に拠るところが大きい。

4.2.2 改善会の実施

次のステップとして改善会を実施した。改善会は改善対象機種を 決め、生産・設計・資材・品質管理のメンバーが集まり、生産工程 ごとに問題点の抽出・分析をおこない、作業・部品・検査のムダを 排除する方法である。

生産部門のみでは解決できない問題を全部門で取り組むことに より生産工程の作業性を改善した。

4.2.3 牛産誘導システムの導入

生産性を向上させるツールとして、生産誘導システムを導入した。 当社独自の生産システムである。

従来,製品の組立や配線は,図面や作業手順書に基づき作業 をしている。ひとつの作業が終了する度に次の作業の確認をおこ なうため、確認する時間が積み重なり、トータルの作業時間が長く なっていた。

そこで、他の事業部で開発されていた、従来の紙ベースの作業手 順書を電子媒体化したものをデータベースとして、PCからモニタへ リアルタイムに表示させ、ひとつの作業が終了すると、自動的に次 の作業手順が表示される生産誘導システムを導入した。これによ り、作業を確認するだけの時間を大幅に短縮することができた。

本システムはネジの締め忘れや、部品間違いが発生すると、次の 工程に進むことができない機能を持たせており、 品質の確保にも 繋がった。また、新規の作業担当者が約1ヶ月要して習得していた 作業を、1週間程度で習得することが可能となった。

写真2 生産誘導システム

以上の活動を継続的におこなった結果,2009年2月に生産性 200%を達成することができた。

5. 仕事量の変動への対応

図1は仕事量, 生産性, 保有人員の関係を表したものである。

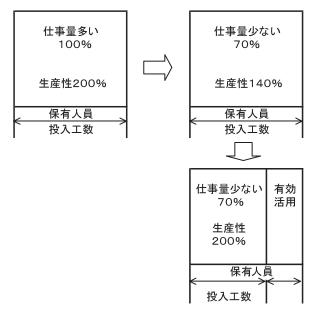


図1 仕事量, 生産量, 保有人員の関係

年間を通しての仕事量の変動は、多いときを100%とすると、少 ないときは70%程度である。前述の生産性200%達成時は比較 的仕事量が多いときであり(図1左上)、同じ投入工数で仕事量が 70%になった場合、理論上、生産性は140%に低下する(図1右 上)。実際に、これに近い状況になっていた。仕事量が減少しても 保有人員を変えずに、生産性を維持するには、投入工数を70%に 管理する必要がある(図1右下)。これにより30%の余剰工数が発 生するが、この対応については後で解説する。

6. 生産性を保つための施策

5項で解説したとおり、仕事量の変動に左右されずに高い生産性 を保つには、投入工数を仕事量に応じて管理することが必要である。

各工程に投入する工数を徹底的に管理し, 平準化を図るために, 更なる取り組みを実施した。

主な施策の概要は以下のとおりである。

6.1 「生産管理ボード」の導入

投入工数を管理するには、仕事量に応じた工数を正確に把握す る必要がある。これを迅速かつ確実におこなうツールとして「生産 管理ボード」(写真3)を導入した。

「生産管理ボード」とは、横軸をカレンダー、縦軸を工数としたマト リクスで、ラインごとの生産情報を記載できるようにした生産計画 ツールである。

「生産管理ボード」を使用して実施した具体的な事項を表1に示す。

No.	項目	実施内容	備考
1	仕事量の把握	・機種別の「工数チップ」(写真3)を積み上げることにより投入工数を明確にした。	・チップの積み上げで必要工数を明確にする。 ・投入する人員を明確にする。 ・仕事量の変動が見えるようにする
2	仕事量の平準化	・「工数チップ」の積み上げ状況を見ながら、 山崩しをおこない、仕事量を平準化した。	・投入工数のバラツキを解消する。・残業を含む投入工数をコントロールする。
3	作業指示	・誰が何時までに何の機種を担当して作業するのかを明記した。(写真4)	・作業担当者は管理者の指示がなくても作業 着手ができるようにする。

表1 生産管理ボードでの取組み内容

写真3 生産管理ボード1

写真4 生産管理ボード2

「生産管理ボード」の導入で、数週間から1ヶ月先の投入工数を 把握することができるようになった。更に山崩しをおこなうことで、 日々投入する工数のバラツキを最小にした。

6.2 多能工の育成

次に, 仕事量に応じた, 適切な人員配置が必要となる。従来, 生 産ラインや機種により作業担当者は大抵が固定されていた。課・係 が異なると作業内容も異なるため、柔軟な人員配置ができないと いった問題がある。これを解消するため、一人で複数の工程の作業 ができる、いわゆる多能工の育成を推進した。そのために実施した 事項は以下である。

- 1) 作業手順書を見直した。作業ポイントを強調させることで初め ての作業でも容易に作業ができる環境作りをした。
- 2) 複雑な作業は、熟練者の作業をビデオ撮影し、それを学習する ことで作業ポイントを習得させた。
- 3) 専門職にしかできない作業は、必ず複数の作業担当者が従事 できるように教育をした。
- 4) 他部門の作業内容を習得するために、定期的に課・係を跨いだ 作業担当者のローテーションを実施した。

これらの取組みの結果,一人で複数工程の作業ができる多能工 を育成した。これにより柔軟な人員配置が可能となった。

以上の施策で投入工数を常に把握し, フレキシブルな人員配置 をおこなうことで、投入工数の適切な管理ができるようになった。 これにより、目標としていた生産体制を作り出すことが可能となり、 仕事量が減少しても高い生産性を維持する結果を得た。

余剰となった工数は、5S活動、生産性改善活動に取り組むなど の改善業務に充てることで有効活用している。

7. むすび

本稿では、「変動に対応した生産体制」について紹介した。

今回の取り組みで、投入工数の管理が定着し、仕事量の変動に 左右されずに一定レベルの生産性を維持する仕組みができたこと は大きな成果である。これらの効果的な活動・仕組みにより、 不況 を乗り切ることができたと考える。

今後も基盤となった2つの活動を継続し、さらなる生産性の向 上を図っていく所存である。

宮入 節男 1974 年入社 パワーシステム事業部 生産部 無停電電源装・太陽光発電装置生産の管理業務に従事。

藤沢 今朝友 1984 年入社 パワーシステム事業部 生産部第1課 無停電電源装・太陽光発電装置生産の管理業務に従事。

六川 洋輔 1979年入社 パワーシステム事業部 生産部第3課 発動発電機・分散・監視装置生産の管理業務に従事。